Monday, 10 December 2018

Consequences of high harmonic distortion levels

The total harmonic distortion(THD) is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.

The plant engineer’s worst fear…

Just as high blood pressure can create stress and serious problems in the human body, high levels of harmonic distortion can create stress and resultant problems for the utility’s distribution system and the plant’s distribution system, as well as all of the equipment that is serviced by that distribution system.


The result may be the plant engineer’s worst fear – the shutting down of important plant equipment ranging from a single machine to an entire line or process.


Equipment shutdown can be caused by a number of events. As an example, the higher voltage peaks that are created by harmonic distortion put extra stress on motor and wire insulation, which ultimately can result in insulation breakdown and failure. In addition, harmonics increase rms current, resulting in increased operating temperatures for many pieces of equipment, greatly reducing equipment life.

Table below summarises some of the negative consequences that harmonics can have on typical equipment found in the plant environment.


Negative Consequences of Harmonics on Plant Equipment



While these effects are categorised by problems created by current and voltage harmonics, current and voltage harmonic distortion usually exist together (current harmonic distortion causes voltage harmonic distortion) .

"Harmonic distortion disrupts plants. Of greatest importance is the loss of productivity, throughput, and, possibly, sales"

These occur because of process shutdowns due to the unexpected failure of motors, drives, power supplies, or just the spurious tripping of breakers. Plant engineers realize how costly downtime can be and pride themselves in maintaining low levels of plant downtime. In addition, maintenance and repair budgets can be severely stretched.

For example, every 10°C rise in the operating temperatures of motors or capacitors can cut equipment life by 50%.